
GO Language – Comprehensive Study notes by Coredao.vip

Go Language – Comprehensive Study Notes

1. Introduction to Go Language

Go, also known as Golang, is an open-source programming language developed by Google in

2009. It was designed by Robert Griesemer, Rob Pike, and Ken Thompson to improve productivity

in modern software development. Go offers simplicity like C but comes with powerful built-in

features for concurrency, garbage collection, and strong typing. It compiles to native machine

code, resulting in fast execution and small binary sizes. Go is widely used in cloud computing,

backend systems, microservices, and networking applications. Its design philosophy emphasizes

clarity, maintainability, and scalability. With a concise syntax, Go is easy to learn for beginners

and highly efficient for professionals. Popular platforms like Docker, Kubernetes, and Terraform

are built using Go. This makes it a vital language for students aiming at system-level and large-

scale application development.

Key Points:

 Created in 2009 at Google.

 Statically typed, compiled language.

 Influenced by C but simpler.

 Has garbage collection.

 Strong concurrency support.

 Cross-platform compilation.

 Used in cloud-native tools.

 Fast compilation time.

 Minimalistic syntax.

 Supported by large community.

GO Language – Comprehensive Study notes by Coredao.vip

2. Setting Up Go Environment

Before coding in Go, it’s essential to set up the development environment properly. Go installation

is simple and works on multiple operating systems like Windows, macOS, and Linux. The official

Go distribution includes the compiler, standard libraries, and the go toolchain. Go uses an

environment variable called GOPATH to locate source code, binaries, and packages. The modern

Go version uses modules (go mod) for dependency management. Setting up an IDE or code editor

such as Visual Studio Code, GoLand, or LiteIDE enhances productivity. Installing Go ensures that

students can practice directly on their systems without relying on online compilers. Understanding

the Go workspace structure helps in organizing code efficiently. This section will guide through

installation, environment configuration, and testing setup.

Configuration process

 Download from golang.org.

 Install on Windows, Mac, Linux.

https://golang.org/dl/

GO Language – Comprehensive Study notes by Coredao.vip

 Set GOROOT (Go installation directory).

 Set GOPATH (workspace location).

 Use go version to check installation.

GO Language – Comprehensive Study notes by Coredao.vip

 Use go env to check variables.

Create testing directory

Initialize a Go Module

Navigate into your project directory and run go mod init <module_path>. This creates

a go.mod file for dependency management.

GO Language – Comprehensive Study notes by Coredao.vip

Create following file in “testing” directory

Test setup using go run.

Running main.go in Testing directory

3. Go Syntax and Data Types

Go’s syntax is clean and easy to read, making it beginner-friendly yet powerful. Like C, it uses

braces {} for blocks and semicolons are automatically inserted. Go supports basic data types like

integers, floats, strings, and booleans, along with complex types like arrays, slices, maps, and

structs. Type inference using := allows Go to automatically determine variable types, making code

concise. Constants are declared using the const keyword, while variables use var. Strings in Go are

UTF-8 encoded, enabling internationalization. Understanding syntax and data types is crucial

because they form the building blocks for functions, loops, and data structures. Students should

practice declaring variables, using operators, and formatting output with fmt.

Key Points:

 var for variables, const for constants.

 Data types: int, float, string, bool.

 Type inference with :=.

 Arrays (fixed size), slices (dynamic).

 Maps (key-value pairs).

 Structs (custom data types).

GO Language – Comprehensive Study notes by Coredao.vip

 UTF-8 strings.

 Operators: arithmetic, logical, relational.

 fmt.Println for output.

 Zero values for uninitialized variables.

Example

package main

import (

 "fmt"

)

func main() {

 // ----- Variables -----

 var age int = 25

 var pi float64 = 3.14159

 var name string = "Alice"

 var isStudent bool = true

 // ----- Constants -----

 const country = "India"

 // ----- Type inference with := -----

 city := "New Delhi"

 year := 2025

 // ----- Zero values -----

 var zeroInt int // 0

 var zeroFloat float64 // 0.0

 var zeroString string // ""

 var zeroBool bool // false

 // ----- Arrays (fixed size) -----

 var numbers [3]int = [3]int{10, 20, 30}

 // ----- Slices (dynamic size) -----

 fruits := []string{"Apple", "Banana", "Cherry"}

 fruits = append(fruits, "Mango") // add new element

 // ----- Maps (key-value pairs) -----

 capitals := map[string]string{

 "India": "New Delhi",

 "USA": "Washington D.C.",

 "Japan": "Tokyo",

 }

GO Language – Comprehensive Study notes by Coredao.vip

 // ----- Structs (custom data types) -----

 type Person struct {

 Name string

 Age int

 City string

 }

 person1 := Person{Name: "Bob", Age: 30, City: "Mumbai"}

 // ----- UTF-8 strings -----

 utf8Str := "नमसे्त" // Hindi greeting

 // ----- Operators -----

 sum := age + 5 // arithmetic

 isAdult := age >= 18 // relational

 canDrive := isAdult && !false // logical

 // ----- Output -----

 fmt.Println("Name:", name)

 fmt.Println("Age:", age)

 fmt.Println("Pi:", pi)

 fmt.Println("Is Student:", isStudent)

 fmt.Println("Country:", country)

 fmt.Println("City:", city, "Year:", year)

 fmt.Println("Zero Values:", zeroInt, zeroFloat, zeroString, zeroBool)

 fmt.Println("Numbers:", numbers)

 fmt.Println("Fruits:", fruits)

 fmt.Println("Capitals:", capitals)

 fmt.Println("Person Struct:", person1)

 fmt.Println("UTF-8 String:", utf8Str)

 fmt.Println("Sum:", sum, "Is Adult:", isAdult, "Can Drive:", canDrive)

}

Result

4. Control Structures in Go

GO Language – Comprehensive Study notes by Coredao.vip

Control structures guide the execution flow of a Go program. Go supports conditional statements

like if, if-else, and switch for decision-making. Loops in Go are implemented using the for keyword,

which can act like a while loop, a traditional for loop, or an infinite loop. The break and continue

statements allow control over loop execution. The goto statement exists but is rarely used in modern

practice. Switch cases in Go can be used with expressions other than integers, making them more

versatile. Error handling in Go is done through explicit checks rather than exceptions.

Understanding these control structures helps students write logic-based programs efficiently.

Key Points:

 if and if-else for decisions.

Example

package main

import (

 "fmt"

)

func main() {

 age := 20

 hasLicense := true

 if age >= 18 && hasLicense {

 fmt.Println("You are allowed to drive.")

 } else if age >= 18 && !hasLicense {

 fmt.Println("You are old enough but need a driving license.")

 } else {

 fmt.Println("You are not old enough to drive.")

 }

 // Example with nested if

 number := -5

 if number > 0 {

 fmt.Println("Positive number")

 } else {

 if number == 0 {

 fmt.Println("Number is zero")

 } else {

 fmt.Println("Negative number")

 }

 }

}

GO Language – Comprehensive Study notes by Coredao.vip

 switch supports multiple types.

Example

package main

import (

 "fmt"

 "time"

)

func main() {

 // Example 1: Basic switch

 day := "Tuesday"

 switch day {

 case "Monday":

 fmt.Println("Start of the work week")

 case "Tuesday":

 fmt.Println("Second day of the week")

 case "Saturday", "Sunday": // multiple values in one case

 fmt.Println("Weekend!")

 default:

 fmt.Println("Midweek day")

 }

 // Example 2: Switch without expression (acts like if-else)

 age := 20

 switch {

 case age < 13:

 fmt.Println("Child")

 case age >= 13 && age < 20:

 fmt.Println("Teenager")

 default:

 fmt.Println("Adult")

 }

 // Example 3: Using fallthrough

 num := 1

 switch num {

 case 1:

GO Language – Comprehensive Study notes by Coredao.vip

 fmt.Println("Number is 1")

 fallthrough

 case 2:

 fmt.Println("Number is 1 or 2")

 default:

 fmt.Println("Other number")

 }

 // Example 4: Switch on current day using time package

 today := time.Now().Weekday()

 switch today {

 case time.Saturday, time.Sunday:

 fmt.Println("Today is weekend:", today)

 default:

 fmt.Println("Today is a weekday:", today)

 }

}

 for loop handles iteration.

 Range loop for slices, maps.

 break exits loops early.

 continue skips iteration.

 No while keyword, use for.

Example

package main

import "fmt"

func main() {

 // Example 1: Standard for loop (like C-style)

 for i := 1; i <= 5; i++ {

 fmt.Println("Count:", i)

 }

 // Example 2: While-style loop

 j := 1

GO Language – Comprehensive Study notes by Coredao.vip

 for j <= 3 {

 fmt.Println("While-style:", j)

 j++

 }

 // Example 3: Infinite loop with break

 count := 1

 for {

 fmt.Println("Infinite loop count:", count)

 count++

 if count > 3 {

 break // exit loop

 }

 }

 // Example 4: Loop with continue

 for k := 1; k <= 5; k++ {

 if k%2 == 0 {

 continue // skip even numbers

 }

 fmt.Println("Odd number:", k)

 }

 // Example 5: Range loop for slices

 fruits := []string{"Apple", "Banana", "Cherry"}

 for index, value := range fruits {

 fmt.Printf("Index: %d, Value: %s\n", index, value)

 }

 // Example 6: Range loop for maps

 capitals := map[string]string{

 "India": "New Delhi",

 "USA": "Washington D.C.",

 "Japan": "Tokyo",

 }

 for country, capital := range capitals {

 fmt.Printf("Country: %s, Capital: %s\n", country, capital)

 }

}

GO Language – Comprehensive Study notes by Coredao.vip

 goto for jumping (not recommended).

 fallthrough in switch.

Example

package main

import "fmt"

func main() {

 // ----- goto example -----

 fmt.Println("Start of program")

 goto SkipSection // jump to label SkipSection

 fmt.Println("This line will be skipped") // skipped due to goto

SkipSection:

 fmt.Println("We jumped here using goto")

 // ----- fallthrough in switch -----

 num := 1

 switch num {

 case 1:

 fmt.Println("Case 1")

 fallthrough // forces execution of the next case

 case 2:

 fmt.Println("Case 2 (executed because of fallthrough)")

 case 3:

 fmt.Println("Case 3")

 default:

 fmt.Println("Default case")

 }

}

GO Language – Comprehensive Study notes by Coredao.vip

Result

 Error handling via if err != nil.

Example

package main

import (

 "fmt"

 "os"

)

func main() {

 // Try to open a file

 file, err := os.Open("example.txt")

 if err != nil {

 // Error occurred → handle it

 fmt.Println("Error opening file:", err)

 return // exit the function early

 }

 defer file.Close() // ensure the file is closed when function ends

 fmt.Println("File opened successfully:", file.Name())

 // Another example: converting string to int

 var input string = "123a" // invalid integer

 value, err := fmt.Sscanf(input, "%d", new(int))

 if err != nil {

 fmt.Println("Error reading integer:", err)

 } else {

 fmt.Println("Successfully read integer:", value)

 }

}

GO Language – Comprehensive Study notes by Coredao.vip

5. Functions and Packages

Functions are the heart of Go programs, enabling modularity and reusability. Functions are

declared using the func keyword, followed by parameters and return types. Go supports multiple

return values, which is useful for returning results and errors together. Anonymous functions and

closures allow functions to be treated as first-class citizens. Packages in Go help organize code

into reusable modules. The main package defines the program entry point, while others can be

imported for extra functionality. The Go standard library offers numerous packages for

networking, file handling, math, and more. Creating and importing packages is essential for

building scalable Go applications.

Key Points:

 func keyword to define functions.

 Multiple return values supported.

 Named return values.

 Anonymous functions.

 Closures store function state.

 Packages for modular code.

 main package for program start.

 import to include packages.

 Standard library is extensive.

 Custom packages possible.

Example

package main // main package is the entry point of a Go program

import (

 "fmt" // import standard library package for formatted I/O

)

// ----- Example of a function with multiple return values -----

func divide(a, b float64) (float64, error) {

 if b == 0 {

 return 0, fmt.Errorf("cannot divide by zero")

 }

 return a / b, nil

}

// ----- Named return values -----

func rectangleArea(length, width float64) (area float64) {

 area = length * width // named return variable assigned directly

 return // returns 'area' implicitly

}

GO Language – Comprehensive Study notes by Coredao.vip

// ----- Function returning another function (Closure) -----

func counter() func() int {

 count := 0

 return func() int { // anonymous function capturing 'count'

 count++

 return count

 }

}

func main() {

 fmt.Println("=== Go Functions Demo ===")

 // Calling divide function with multiple return values

 result, err := divide(10, 2)

 if err != nil {

 fmt.Println("Error:", err)

 } else {

 fmt.Println("10 / 2 =", result)

 }

 // Calling named return value function

 fmt.Println("Area of rectangle 5x3 =", rectangleArea(5, 3))

 // Anonymous function assigned to a variable

 greet := func(name string) {

 fmt.Println("Hello,", name)

 }

 greet("Alice")

 // Using a closure to maintain state

 nextCount := counter()

 fmt.Println("Counter:", nextCount())

 fmt.Println("Counter:", nextCount())

 fmt.Println("Counter:", nextCount())

 // Showing package usage (standard library: fmt, custom possible)

 fmt.Println("We used 'fmt' from Go's extensive standard library.")

}

GO Language – Comprehensive Study notes by Coredao.vip

6. Concurrency in Go

One of Go’s most powerful features is its built-in support for concurrency. Concurrency allows

multiple tasks to run independently without blocking each other. Go achieves this using goroutines,

which are lightweight threads managed by the Go runtime. Channels are used to communicate

between goroutines safely. The select statement works like a switch but for channels, enabling

multiple communication operations to be handled at once. Concurrency in Go is simpler compared

to traditional threading models. This makes it ideal for building scalable, high-performance

systems such as web servers and real-time applications. Students should understand

synchronization techniques and avoid race conditions.

Key Points:

 Goroutines with go keyword.

 Channels for communication.

 Buffered and unbuffered channels.

 select for multiple channel ops.

 sync package for synchronization.

 Mutex for shared resource protection.

 WaitGroups for goroutine completion.

 Concurrency ≠ parallelism.

 Ideal for network servers.

 Lightweight thread model.

Example

package main

import (

 "fmt"

 "sync"

 "time"

)

// Function to simulate work

func worker(id int, wg *sync.WaitGroup, ch chan string, m *sync.Mutex) {

 defer wg.Done() // mark this goroutine as done when finished

 for i := 1; i <= 3; i++ {

 time.Sleep(time.Millisecond * 500) // simulate work

 // Protect shared output with Mutex

 m.Lock()

 msg := fmt.Sprintf("Worker %d: Step %d", id, i)

 ch <- msg // send to channel

 m.Unlock()

 }

}

GO Language – Comprehensive Study notes by Coredao.vip

func main() {

 fmt.Println("=== Go Concurrency Demo ===")

 var wg sync.WaitGroup // WaitGroup for goroutine completion

 var m sync.Mutex // Mutex for shared resource protection

 // Unbuffered channel

 unbufferedCh := make(chan string)

 // Buffered channel (capacity 2)

 bufferedCh := make(chan string, 2)

 // Launch goroutines using `go` keyword

 wg.Add(2)

 go worker(1, &wg, unbufferedCh, &m)

 go worker(2, &wg, bufferedCh, &m)

 // Goroutine to read from both channels

 go func() {

 for {

 select {

 case msg := <-unbufferedCh:

 fmt.Println("Unbuffered:", msg)

 case msg := <-bufferedCh:

 fmt.Println("Buffered:", msg)

 case <-time.After(2 * time.Second): // timeout

 fmt.Println("No activity for 2 seconds, stopping listener.")

 return

 }

 }

 }()

 // Wait for all workers to complete

 wg.Wait()

 // Close channels to signal completion

 close(unbufferedCh)

 close(bufferedCh)

 fmt.Println("All workers done.")

}

GO Language – Comprehensive Study notes by Coredao.vip

Result

7. File Handling in Go

Go provides robust file handling through its os, io, and bufio packages. File operations like creating,

opening, reading, writing, and deleting are straightforward. Error handling is mandatory for file

operations, ensuring reliability. Reading can be done in small chunks or all at once, depending on

the use case. Buffered reading improves efficiency for large files. Go also supports JSON, CSV,

and XML file parsing through standard packages. Mastering file handling is important for students

because almost every real-world application involves storing and retrieving data. This section will

guide through safe file I/O with examples.

Key Points:

 Use os.Open for reading files.

 os.Create for creating files.

 defer file.Close() to close files.

 bufio for buffered I/O.

 ioutil.ReadFile for quick reads.

 fmt.Fprintln for writing.

 JSON handling with encoding/json.

 CSV handling with encoding/csv.

 Check errors with if err != nil.

 Delete files with os.Remove.

GO Language – Comprehensive Study notes by Coredao.vip

Technical work

File handling in Go is straightforward, with powerful standard library support. Common tasks

like reading, writing, creating, and deleting files are built into the os, bufio, ioutil, fmt, and

encoding packages.

1. Opening Files

 os.Open is used to open an existing file for reading.

 Returns a *os.File and an error value.

 Example:

file, err := os.Open("data.txt")

if err != nil {

 log.Fatal(err)

}

defer file.Close()

2. Creating Files

 os.Create creates a new file (or truncates if it already exists).

 Example:

file, err := os.Create("output.txt")

if err != nil {

 log.Fatal(err)

}

defer file.Close()

3. Closing Files

 Always close the file after operations using:

defer file.Close()

 This ensures resources are freed even if an error occurs.

4. Buffered I/O

 bufio improves performance by reading/writing in chunks.

 Example:

scanner := bufio.NewScanner(file)

GO Language – Comprehensive Study notes by Coredao.vip

for scanner.Scan() {

 fmt.Println(scanner.Text())

}

5. Quick File Reads

 ioutil.ReadFile reads the entire file content into memory.

 Example:

data, err := ioutil.ReadFile("data.txt")

if err != nil {

 log.Fatal(err)

}

fmt.Println(string(data))

6. Writing to Files

 fmt.Fprintln writes formatted text to a file.

 Example:

fmt.Fprintln(file, "Hello, Go File Handling!")

7. JSON File Handling

 encoding/json is used for reading/writing JSON data.

 Example (Writing):

data := map[string]string{"name": "John", "age": "25"}

json.NewEncoder(file).Encode(data)

8. CSV File Handling

 encoding/csv helps read/write CSV files.

 Example:

writer := csv.NewWriter(file)

writer.Write([]string{"Name", "Age"})

writer.Write([]string{"John", "25"})

writer.Flush()

GO Language – Comprehensive Study notes by Coredao.vip

9. Error Checking

 Always check for errors:

if err != nil {

 log.Fatal(err)

}

10. Deleting Files

 os.Remove deletes a file.

 Example:

err := os.Remove("oldfile.txt")

if err != nil {

 log.Fatal(err)

}

✅ Key Takeaways:

 Always close files after use (defer is handy).

 For small files, use ioutil.ReadFile or os.WriteFile.

 For large files, use bufio for better performance.

 Handle errors properly to prevent runtime failures.

8. Error Handling in Go

Unlike many languages that use exceptions, Go uses explicit error handling. Functions often return

an error type as their last return value. The programmer must check if the error is nil before

proceeding. This approach encourages writing clear and predictable code. The errors package is

used to create custom errors, and the fmt.Errorf function allows formatted error messages. Go also

provides the panic and recover mechanisms for unexpected situations, though they should be used

sparingly. Good error handling improves program stability, especially in production systems.

Key Points:

 error is an interface type.

 Check errors with if err != nil.

 Create errors with errors.New.

 Format errors with fmt.Errorf.

 panic stops normal execution.

 recover regains control.

 Avoid panic for normal errors.

GO Language – Comprehensive Study notes by Coredao.vip

 Use logging for error tracking.

 Graceful error handling improves UX.

 Errors are part of return values.

Technical work

Error Handling in Go

1. error is an interface type
o In Go, errors are values. The error type is defined as:

o type error interface {

o Error() string

o }

2. Check errors with if err != nil
o Always check for errors after a function call that can fail:

o if err != nil {

o // handle the error

o }

3. Create errors with errors.New
o You can make a simple error:

o err := errors.New("something went wrong")

4. Format errors with fmt.Errorf
o Allows formatted error messages:

o err := fmt.Errorf("file %s not found", filename)

5. panic stops normal execution
o panic is used for unrecoverable errors (e.g., array index out of range).

o panic("fatal error")

6. recover regains control
o Used inside a defer function to stop a panic from crashing the program:

o defer func() {

o if r := recover(); r != nil {

o fmt.Println("Recovered:", r)

o }

o }()

7. Avoid panic for normal errors
o Reserve panic for unexpected, non-recoverable states (like corrupted memory),

not user mistakes.

8. Use logging for error tracking
o Example with log package:

o log.Println(err)

9. Graceful error handling improves UX
o Inform the user without crashing the program; allow retries or alternatives.

10. Errors are part of return values
o In Go, multiple return values are common:

o result, err := doSomething()

