
9th Class Study Material (CoreDaoVip Global Curriculum)

1

STUDY MATERIAL OF CLASS 9

1. INTRODUCTION TO PYTHON

Python is a beginner-friendly, high-level programming language widely used in data science,

web development, and automation. Block-based coding platforms like Google Colaboratory

(Colab) or Blockly make Python even more accessible to beginners.

1.1 Basics

Here's a concise explanation of the Basics of Python, covering syntax, indentation, comments,

and the print() function:

1. Python Syntax

 Python syntax refers to the set of rules that defines how a Python program will be written

and interpreted.

 Python uses a clean and readable syntax.

x = 5

y = 10

print(x + y)

2. Indentation (Critical in Python)

 Indentation is used to define blocks of code.

 Unlike many other languages (like C, Java, etc.) that use {} to define blocks, Python

relies on whitespace indentation.

 4 spaces is the typical standard (but tabs or any consistent space count is accepted).

if x > y:

 print("x is greater")

else:

 print("y is greater or equal")

9th Class Study Material (CoreDaoVip Global Curriculum)

2

❗Incorrect indentation causes errors:

if x > y:

print("x is greater") # ❌ This will raise an IndentationError

3. Comments

 Used to explain code or make it more readable.

 Ignored during execution.

 Single-line comments start with #.

This is a single-line comment

x = 10 # This comment is after a statement

 Multi-line comments can be written using triple quotes ''' or """ (commonly used for

docstrings too):

'''

This is a multi-line comment

used in Python

'''

4. print() Function

 Used to display output to the screen.

print("Hello, World!") # Prints text

print(3 + 7) # Prints 10

print("Sum is:", x + y) # Combines text and variable output

Example Code Putting It All Together:

This program adds two numbers

x = 5

y = 10

Check which number is larger

if x > y:

 print("x is greater")

else:

 print("y is greater or equal")

print("The sum is:", x + y) # Output the result

1.2 Variables, Constants, Keywords

Here’s a clear explanation of variables and constants in Python:

9th Class Study Material (CoreDaoVip Global Curriculum)

3

1. Variables in Python

✅ Definition: A variable is a name that refers to a value stored in memory. It can change

during the program's execution.

✅ How to Declare: No need to specify the data type. Just assign a value using =.

x = 10 # Integer

name = "John" # String

pi = 3.14 # Float

✅ Variable Naming Rules:

 Must begin with a letter or underscore (_)

 Can contain letters, numbers, and underscores

 Case-sensitive (Name and name are different)

 Avoid using Python keywords (like if, while, for)

Valid

_age = 25

total_amount = 100

Invalid

2name = "Alice" ❌

if = 10 ❌ (keyword)

2. Constants in Python

Definition: A constant is a variable whose value should not change during the execution of a

program.

⚠️ Python doesn’t have true constants, but by convention, constants are written in all

UPPERCASE letters.

✅ How to Declare:

PI = 3.14159

MAX_USERS = 100

APP_NAME = "MyApp"

➡️ These are not enforced by Python but are understood to be unchangeable by developers.

🔄 Summary Table

Feature Variable Constant

Can change? ✅ Yes 🚫 Should not change

Syntax lowercase or camelCase ALL_UPPERCASE

Example user_name = "Alice" PI = 3.14

Enforced? Yes by Python No (convention only)

9th Class Study Material (CoreDaoVip Global Curriculum)

4

 Keywords are reserved words like if, else, for, while, def, which cannot be used as variable

names. List of keywords have been provided in 8th class study material (CoreDaoVip

Global Curriculum)

1.3 Decision Making in Python
1. if, elif, else

2. Simulated switch (since Python doesn't have a built-in switch like C/C++)

3. Ternary/Conditional operator

1. if-elif-else Statement

Used for conditional branching.

✅ Example:

x = 15

if x > 20:

 print("x is greater than 20")

elif x == 15:

 print("x is equal to 15")

else:

 print("x is less than 20")

2. Simulated switch using dict

Python does not have a switch-case statement natively. Instead, we use a dictionary with

functions or values.

✅ Example:

def switch_day(day):

 switcher = {

 1: "Monday",

 2: "Tuesday",

 3: "Wednesday",

 4: "Thursday",

 5: "Friday",

 6: "Saturday",

 7: "Sunday"

 }

 return switcher.get(day, "Invalid day")

print(switch_day(3)) # Output: Wednesday

3. Ternary Operator (One-line if-else)

✅ Syntax:

value_if_true if condition else value_if_false

✅ Example:

age = 18

9th Class Study Material (CoreDaoVip Global Curriculum)

5

status = "Adult" if age >= 18 else "Minor"

print(status) # Output: Adult

Table 1 Summary Table

Type Syntax Example Use Case

if-else if x > 0: print("Positive") Multi-branch logic

switch (dict) switcher.get(choice, "Invalid") Replace multiple if-elif chains

ternary "Yes" if x == 1 else "No" One-line decision

1.4 Loops in Python

This section considers 4 types of looping mechanisms:

1. for loop

2. while loop

3. Simulated do-while loop

4. Nested loops

1. for Loop

✅ Used when you know how many times to iterate — often with sequences like lists,

strings, or range().

🔸 Syntax:

for variable in sequence:

 # code block

✅ Example:

for i in range(1, 6):

 print("Number:", i)

Output:
Number: 1

Number: 2

Number: 3

Number: 4

Number: 5

2. while Loop

✅ Used when the condition is checked first, and you don’t know how many iterations are

needed in advance.

✅ Example:

count = 1

while count <= 5:

 print("Count is:", count)

 count += 1

9th Class Study Material (CoreDaoVip Global Curriculum)

6

3. Simulated do-while Loop

Python does not have a built-in do-while loop, but we can simulate it.

✅ Example:
count = 1

while True:

 print("Count is:", count)

 count += 1

 if count > 5:

 break

This runs at least once, just like do-while in other languages.

4. Nested Loops

✅ A loop inside another loop, useful for working with grids, matrices, patterns, etc.

✅ Example:
for i in range(1, 4): # Outer loop

 for j in range(1, 4): # Inner loop

 print(f"{i},{j}", end=" ")

 print() # New line after each inner loop

Output:

1,1 1,2 1,3

2,1 2,2 2,3

3,1 3,2 3,3

Table 2 Summary Table

Loop Type Use Case Condition
Check

Guaranteed Run at Least
Once

Python
Support

for Iterating over known
ranges/lists

Before loop ❌ ✅ Yes

while Repeat while condition is
true

Before loop ❌ ✅ Yes

do-while Repeat at least once, then
check

After loop ✅ (simulated using
while)

❌ (Simulate)

Nested
Loops

Patterns, 2D data,
combinations

Varies ❌ ✅ Yes

1.5 Introduction to Object oriented Programming in Python

What is Object-Oriented Programming?

OOP is a programming paradigm that organizes code into objects that contain both data

(attributes) and behavior (methods).

9th Class Study Material (CoreDaoVip Global Curriculum)

7

Table 3 Key Concepts of OOP in Python

Concept Description

Class A blueprint for creating objects

Object An instance of a class

Constructor A special method (__init__) that runs when an object is created

Attributes Variables that hold data about the object

Methods Functions defined inside a class

Self A reference to the current object

Inheritance One class can inherit properties from another

Encapsulation Restricts access to certain details (private/public)

Polymorphism Allows different classes to define methods with the same name but different

behavior

1. Class and Object

✅ Example:

class Person:

 def __init__(self, name, age): # Constructor

 self.name = name # Attribute

 self.age = age

 def greet(self): # Method

 print(f"Hello, my name is {self.name} and I am {self.age} years old.")

Create Object

p1 = Person("Alice", 25)

p1.greet()

Output:
Hello, my name is Alice and I am 25 years old.

2. Inheritance

Allows a class to use properties and methods from another class.

class Student(Person): # Student inherits from Person

 def __init__(self, name, age, grade):

 super().__init__(name, age) # Call parent constructor

 self.grade = grade

 def show(self):

 print(f"{self.name} is in grade {self.grade}")

s1 = Student("Bob", 18, "12th")

s1.greet() # Inherited method

s1.show()

9th Class Study Material (CoreDaoVip Global Curriculum)

8

3. Encapsulation

You can make variables private using __ (double underscores).

class Account:

 def __init__(self, balance):

 self.__balance = balance # Private attribute

 def show_balance(self):

 print("Balance:", self.__balance)

a1 = Account(1000)

a1.show_balance()

print(a1.__balance) # ❌ This will raise an error

4. Polymorphism

Same method name, different behavior in different classes.

class Dog:

 def speak(self):

 print("Woof!")

class Cat:

 def speak(self):

 print("Meow!")

Polymorphism

for animal in (Dog(), Cat()):

 animal.speak()

Output:
Woof!

Meow!

Table 4 Summary Table

Feature Python Syntax Example

Class class MyClass:

Object obj = MyClass()

Constructor def __init__(self):

Attribute self.name = "value"

Method def my_method(self):

Inheritance class Child(Parent):

Encapsulation self.__private = "secret"

Polymorphism def speak(): (in multiple classes)

9th Class Study Material (CoreDaoVip Global Curriculum)

9

1.6 Python Lab

Example 1: Right-Angled Triangle of Stars *

rows = 5

for i in range(1, rows + 1): # Outer loop for rows

 for j in range(1, i + 1): # Inner loop for stars

 print("*", end=" ")

 print() # Newline after each row

Output:

*

* *

* * *

* * * *

* * * * *

Example 2: Number Pattern

rows = 5

for i in range(1, rows + 1):

 for j in range(1, i + 1):

 print(j, end=" ")

 print()

Output:

1

1 2

1 2 3

1 2 3 4

1 2 3 4 5

Example 3: Inverted Triangle Pattern

rows = 5

for i in range(rows, 0, -1):

 for j in range(1, i + 1):

 print("*", end=" ")

 print()

Output:
* * * * *

* * * *

* * *

* *

*

9th Class Study Material (CoreDaoVip Global Curriculum)

10

2. MACHINE LEARNING

2.1 What is Machine Learning (ML)?

Machine Learning is a branch of Artificial Intelligence (AI) that enables systems to learn

from data and improve their performance over time without being explicitly programmed.

Instead of hard-coding rules, ML systems learn patterns from past data to make predictions or

decisions on new data.

2.2 How Do Apps Learn from Data?

Step-by-step Learning Process:

1. Collect Data
E.g., user behavior, sensor data, images, transactions

2. Preprocess Data
Clean, normalize, and prepare it for training

3. Train Model
Feed data to an ML algorithm to learn patterns

4. Evaluate Model
Test it on unseen data (called testing or validation set)

5. Make Predictions
Use the trained model to predict future outcomes

6. Improve
Feedback loop helps in retraining with more or better data

2.3 Types of Machine Learning Models

2.3.1. Supervised Learning

Model learns from labeled data (input ➡️ output)

 Example Algorithms:
o Linear Regression (for prediction)

o Logistic Regression (for classification)

o Support Vector Machine (SVM)

o Decision Trees

o Random Forest

o K-Nearest Neighbors (KNN)

 Use Cases:
Email spam detection, credit score prediction, fraud detection

9th Class Study Material (CoreDaoVip Global Curriculum)

11

2.3.2. Unsupervised Learning

Model learns patterns from unlabeled data

 Example Algorithms:

o K-Means Clustering

o Hierarchical Clustering

o Principal Component Analysis (PCA)

 Use Cases:
Customer segmentation, market basket analysis, anomaly detection

2.3.3. Reinforcement Learning

Agent learns to make decisions through trial and error with rewards and penalties

 Example Algorithms:
o Q-Learning

o Deep Q Networks (DQN)

o Policy Gradient

 Use Cases:
Robotics, game playing (e.g., AlphaGo), self-driving cars

2.3.4. Semi-Supervised Learning

Combination of small labeled + large unlabeled data

 Useful when labeled data is expensive/time-consuming to obtain

2.3.5. Deep Learning (a subset of ML)

Uses neural networks with multiple layers (deep networks)

 Example Models:
o Convolutional Neural Networks (CNN) – for images

o Recurrent Neural Networks (RNN) – for sequences/time

o LSTM – long-term memory for text or IoT data

o Transformers – for language models (e.g., ChatGPT)

9th Class Study Material (CoreDaoVip Global Curriculum)

12

Fig 1 Different type of ML Models

Table 5 Comparison of ML Models

Model Type Best For Pros Cons

Linear

Regression

Supervised Predicting continuous

values

Simple, fast Not good with

complex data

Logistic

Regression

Supervised Binary classification Interpretable Works only

for linear

cases

Decision Tree Supervised Classification/regression Easy to

understand

Overfitting on

noisy data

Random Forest Supervised Classification/regression High

accuracy

Slower, less

interpretable

K-Means Unsupervised Clustering similar items Fast, scalable Need to

define number

of clusters

SVM Supervised Classification of clear

margin

Accurate for

small datasets

Slow on large

datasets

Neural

Networks

Deep

Learning

Complex tasks like

vision/NLP

Powerful,

automatic

features

Needs lots of

data and

power

Reinforcement

Learning

Reinforcement Learning in dynamic

environments

Adapts over

time

Hard to train,

needs

simulation

Machine
learning

Supervised
learning

Unsupervised
learning

Deep learning
Reinforcement

learning

9th Class Study Material (CoreDaoVip Global Curriculum)

13

Fig 2 Hierarchical Diagram of Supervised and Unsupervised ML

Categorization of Machine Learning Models with their use case

1️. Supervised Learning Models

➡️ Learn from labeled data (input → output)

Table 6 Supervised Learning Models

Model Use Case Type

Linear Regression Predict numeric values Regression

Logistic Regression Predict binary classes Classification

Decision Tree Interpretable branching model Both

Random Forest Ensemble of decision trees Both

Support Vector Machine (SVM) Clear class boundaries Classification

K-Nearest Neighbors (KNN) Based on distance Classification

Naive Bayes Based on probability Classification

Gradient Boosting (XGBoost, LightGBM) Ensemble learning Both

M
ac

h
in

e
le

ar
n

in
g

Supervised

SVM

Naive Bayes

Linear regression

Logistic regression

Decision tree

Random Forest

Unsupervised

Kmean

Hierarchical

DBSCAN

Mean Shift

9th Class Study Material (CoreDaoVip Global Curriculum)

14

2️. Unsupervised Learning Models

➡️ Learn from unlabeled data (no output)

Table 7 Unsupervised Learning Models

Model Use Case Type

K-Means Clustering Group similar items Clustering

Hierarchical Clustering Tree-like groupings Clustering

DBSCAN Density-based clustering Clustering

Principal Component Analysis (PCA) Reduce dimensions Dim. Reduction

Autoencoders Neural network for compression Dim. Reduction

Apriori / FP-Growth Association rules Pattern Mining

Isolation Forest Detect outliers Anomaly Detection

3️. Reinforcement Learning Models

➡️ Learn by trial and error with rewards and penalties

Table 8 Reinforcement Learning Models

Model/Algorithm Use Case

Q-Learning Tabular state-action problems

Deep Q Networks (DQN) Complex game AI

Policy Gradient Methods Direct action optimization

Actor-Critic Models Balance learning & action

Used in: Game AI (e.g., AlphaGo), Robotics, Self-driving cars

4️. Deep Learning Models (Subset of ML using Neural Networks)

Table 9 Deep Learning Models

Model Use Case

Artificial Neural Network (ANN) General purpose predictions

Convolutional Neural Network (CNN) Image, video, vision tasks

Recurrent Neural Network (RNN) Sequence, time series

LSTM (Long Short-Term Memory) Memory-based sequence tasks

Transformer (e.g., BERT, GPT) NLP, translation, chatbots

GANs (Generative Adversarial Networks) Data generation

9th Class Study Material (CoreDaoVip Global Curriculum)

15

Table 10 Summary Table

Learning Type Model Examples Best For

Supervised Linear Regression, SVM, Random Forest Prediction, classification

Unsupervised K-Means, PCA, Autoencoders Grouping, dimensionality reduction

Reinforcement Q-Learning, DQN Decision-making over time

Deep Learning CNN, RNN, Transformer Images, text, complex data

💡 Final Notes:

 All deep learning is machine learning, but not all machine learning is deep learning.

 Models like Random Forest and XGBoost are popular for structured data (e.g., CSV

files).

 CNNs, RNNs, and Transformers are used when dealing with unstructured data like

images, text, and audio.

3.BLOCKCHAIN

3.1 What is Blockchain Structure?

A blockchain is a decentralized, distributed ledger that stores data (usually transactions) in

linked blocks. Once added, data is nearly impossible to alter — making it secure, transparent,

and tamper-proof.

Structure of a Blockchain

Each block in a blockchain contains the following:

+----------------------------+

| Block Header |

|----------------------------|

| 1. Block Number |

| 2. Timestamp |

| 3. Nonce (random number) |

| 4. Previous Block Hash |

| 5. Current Block Hash |

|----------------------------|

| Transactions (Data) |

+----------------------------+

Table 11 Key Components

Part Purpose

Block Number Position of the block in the chain

Timestamp When the block was created

Nonce Random number used for mining (proof-of-work)

Previous Hash Links this block to the previous one

Data Transaction records

Hash Unique ID of this block (generated by hashing)

Each block is linked to the previous one through the previous hash, forming a chain.

9th Class Study Material (CoreDaoVip Global Curriculum)

16

3.2 What is Hashing in Blockchain?

✅ Hashing is a process of converting input (data) into a fixed-length alphanumeric string

(called hash or digest) using a hash function.

Most commonly used: SHA-256 (Secure Hash Algorithm 256-bit)

Properties of Hashing:

1. Deterministic – Same input always gives same output

2. Irreversible – Can’t derive the input from output

3. Fast – Quickly computes hash for any data

4. Collision-resistant – No two inputs produce same output

5. Avalanche effect – Small change in input → huge change in hash

Example of SHA-256 Hash:
import hashlib

data = "Hello, Blockchain!"

hash_result = hashlib.sha256(data.encode()).hexdigest()

print("SHA-256 Hash:", hash_result)

Output:

SHA-256 Hash: 9a0c... (a 64-character hexadecimal string)

How Blockchain Uses Hashing

➤ Every block contains:

 Hash of previous block

 Hash of its own data
This chaining ensures immutability:

🔐 If someone tries to modify data in any block, its hash changes, breaking the chain, making

tampering obvious.

Table 12 Example Chain (simplified):

Block Data Prev Hash Hash (current)

1 Genesis Block 0000 A1B2C3...

2 50 coins A1B2C3... F4E5D6...

3 20 coins F4E5D6... 1A2B3C...

If Block 2 is altered, Block 3's previous hash won’t match → blockchain is broken unless

recalculated (which is computationally infeasible in real networks).

9th Class Study Material (CoreDaoVip Global Curriculum)

17

Table 13 Summary

Concept Description

Blockchain A chain of blocks storing data securely

Block Contains data, previous hash, and current hash

Hashing Converts data to fixed-size encrypted strings

Hash Function Ensures data integrity and uniqueness

Immutability Changes to one block break the whole chain

3.3 Proof of Work/ Proof of Stack

Proof of Work (PoW) and Proof of Stake (PoS) are two key consensus mechanisms used in

blockchain to validate transactions and add new blocks securely:

3.3.1. Proof of Work (PoW)

✅ What it is:

Proof of Work is a consensus algorithm that requires miners to solve complex mathematical

puzzles using computing power. The first one to solve it gets to add a new block to the blockchain

and receive a reward.

🔧 How it works:

1. Miners compete to solve a cryptographic puzzle (e.g., find a hash with certain number of

leading zeros).

2. The first miner to solve it broadcasts the solution to the network.

3. The solution is verified by other nodes.

4. A new block is added to the chain.

5. The miner gets a reward (e.g., Bitcoin).

🔒 Security:

 Very secure but energy-intensive.

 Makes it very hard for anyone to tamper with the blockchain because they would need to

redo all the work.

⚙️ Used by:

 Bitcoin

 Litecoin

❌ Disadvantages:

 Requires huge computational power

 Slow and energy-consuming

3.3.2. Proof of Stake (PoS)

✅ What it is:

Proof of Stake is a greener alternative to PoW. Instead of solving puzzles, validators are

randomly chosen to create a new block based on how much cryptocurrency they “stake” (lock

up as collateral).

9th Class Study Material (CoreDaoVip Global Curriculum)

18

🔧 How it works:

1. Users stake their coins (lock them in the network).

2. The network selects a validator, often based on a mix of:

o Amount staked

o Randomness

o Coin age

3. The selected validator validates the block and adds it to the chain.

4. Validator receives transaction fees or rewards.

🔒 Security:

 Encourages honesty: bad behavior = loss of stake.

 Less power-hungry than PoW.

⚙️ Used by:

 Ethereum 2.0

 Cardano

 Polkadot

✅ Advantages:

 Energy-efficient
 Faster than PoW

 Environmentally friendly

Table 14 Comparison Table: PoW vs PoS

Feature Proof of Work (PoW) Proof of Stake (PoS)

Who validates? Miners (solve puzzles) Validators (stake coins)

Energy use 🔋 High (computing power needed) 🌱 Low (eco-friendly)

Speed ⏱️ Slower ⚡ Faster

Security 🔐 Very secure 🔐 Secure, but depends on design

Rewards Block reward + fees Staking reward or fees

Used by Bitcoin, Litecoin Ethereum 2.0, Cardano, Polkadot

Risk of attack Needs 51% hash power Needs 51% of staked coins

Table 15 Summary

Concept Description

PoW Solve puzzles using CPU/GPU to validate blocks — secure but slow & power-hungry

PoS Validators are chosen based on staked coins — faster, energy-efficient

9th Class Study Material (CoreDaoVip Global Curriculum)

19

4.Exploring Coredaovip and 9nftmania?

However it is discussed in study material of class 6, class 7 and class 8. But for further details

students should visit official website of 9nftmania and Coredaovip.

9nftmania

Visit official site of https://9nftmania.com

Fig 3 Official website of 9nftmania

Coredaovip

Visit official site of https://coredao.vip

Fig 4 Official website of Coredaovip

https://9nftmania.com/
https://coredao.vip/

9th Class Study Material (CoreDaoVip Global Curriculum)

20

5.DEX vs CEX

Already discussed in study material of Class 8

6.DEFI vs CEFI

Already discussed in study material of Class 8

7.EXPLORING WEB 3.0

7.1 WEB 3.0

Web 3.0, also known as the Semantic Web or decentralized web, represents the next phase in

the evolution of the internet, following Web 1.0 (static web) and Web 2.0 (interactive/social web).

7.2 What is Web 3.0?

Web 3.0 aims to create a smarter, more connected, and decentralized internet, where users

have greater control over their data and digital identities, and where machines can understand

and process content more meaningfully.

Table 16 Key Characteristics of Web 3.0

Feature Description

Decentralization Data is stored across blockchain or distributed networks, reducing reliance
on centralized servers.

Semantic
Understanding

Machines can interpret the meaning/context of data, enabling smarter
search and interaction.

Artificial Intelligence AI and machine learning are embedded into applications to provide better
personalization and automation.

Ubiquity Web 3.0 applications can be accessed from any device or platform,
anywhere.

Trustless and
Permissionless

Users can interact without needing a central authority or permissions,
thanks to blockchain.

Ownership and Control Users own their data and digital assets via cryptographic keys and
decentralized identifiers (DIDs).

⚙️ Core Technologies Behind Web 3.0

 Blockchain (e.g., Ethereum, Polkadot)

 Cryptocurrencies & Tokens (e.g., ETH, NFTs)

 Decentralized Apps (dApps)

 Smart Contracts
 Decentralized Storage (e.g., IPFS, Filecoin)

 Artificial Intelligence & Machine Learning
 Semantic Web technologies (e.g., RDF, OWL)

9th Class Study Material (CoreDaoVip Global Curriculum)

21

Table 17 Differences: Web 1.0 vs 2.0 vs 3.0

Feature Web 1.0 Web 2.0 Web 3.0

Timeframe 1990s – early 2000s 2000s – present Emerging (2020s onward)

Nature Static content Interactive & social Intelligent, decentralized

Users Consumers Content creators Owners & stakeholders

Control Centralized Centralized platforms Decentralized, peer-to-peer

Monetization Banner ads Ad revenue, user data Tokens, smart contracts

⏱️ Applications of Web 3.0

 DeFi (Decentralized Finance) – lending, staking, trading without intermediaries

 NFTs (Non-Fungible Tokens) – ownership of digital assets like art or music

 DAOs (Decentralized Autonomous Organizations) – community-run governance

 Decentralized Identity – self-sovereign identity management

 Metaverse – immersive, persistent virtual worlds (integrated with crypto)

⚠️ Challenges

 Scalability and transaction speed

 Regulatory uncertainty
 User experience (still complex for non-tech users)

 Security and scams in decentralized ecosystems

📌 Summary

Web 3.0 is a vision for a decentralized and intelligent internet where users regain control of their

data and digital interactions. It merges technologies like blockchain, AI, and the semantic web to

create trustless, permissionless, and user-centric digital ecosystems.

9th Class Study Material (CoreDaoVip Global Curriculum)

22

8.Exploring OpenSea

OpenSea is the world’s largest decentralized marketplace for NFTs (Non-Fungible Tokens), built

primarily on the Ethereum blockchain and also supporting Polygon, Klaytn, and Arbitrum.

Fig 5 OpenSea NFT Market place

Key Features:

 Buy, sell, and mint NFTs
 Supports ERC-721 and ERC-1155 token standards

 Wallet integration (e.g., MetaMask)

 Creator royalties and collection management

 On-chain and off-chain metadata indexing

Use Cases:

 Digital art trading

 Collectibles

 Gaming assets

 Virtual real estate

9. 👩🔬 Researcher Economy (Web3 for Research)

The Researcher Economy refers to a decentralized, blockchain-powered ecosystem where:

 Researchers own their data and IP

 Contributions are tokenized and rewarded

 Peer review is transparent and traceable

 NFTs and DAO-based governance manage ownership and access

Use of Blockchain:

9th Class Study Material (CoreDaoVip Global Curriculum)

23

 Immutable research records

 Funding via tokenized incentives or smart contracts

 Open-access data sharing with incentives

 Authorship validation through token ownership

10. WORKING ON DEX (DECENTRALIZED EXCHANGE)

A DEX enables peer-to-peer cryptocurrency trading without intermediaries. Unlike centralized

exchanges (CEX), DEXs use smart contracts to automate trades and asset custody.

Table 18 List of Different DEXs

DEX Name Blockchain(s) AMM Type Native

Token

Key Features

Uniswap Ethereum, Arbitrum,

Polygon

Constant Product

(x*y=k)

UNI Pioneering DEX, concentrated

liquidity in V3

PancakeSwap BNB Chain Constant Product CAKE Yield farming, lottery, NFTs

SushiSwap Multi-chain Constant Product SUSHI Community-driven, supports

lending

Curve Finance Ethereum, Fantom,

Arbitrum

StableSwap CRV Optimized for stablecoin trading

with low slippage

IceCreamSwap zkSync, Mantle,

CoreDAO, etc.

Constant Product ICE Multi-chain support, low gas

DEX, new-chain integration

LFGSwap CoreDAO Constant Product LFG CoreDAO-based DEX, liquidity

mining and staking

ArcherSwap CoreDAO Constant Product BOW NFT farming, launchpad features

ShadowSwap CoreDAO Constant Product SHDW CoreDAO ecosystem, privacy

focus, fast UI

Balancer Ethereum, Polygon Weighted Pool

AMM

BAL Custom token weight pools

1inch Multi-chain Aggregator 1INCH Finds best prices by aggregating

multiple DEXs

QuickSwap Polygon Constant Product QUICK Fast and affordable Polygon-

native DEX

Raydium Solana AMM + Order

Book

RAY Integrates Serum's on-chain order

book

Trader Joe Avalanche Constant Product JOE Lending, farming, and NFT

marketplace

DODO Ethereum, BNB Chain Proactive Market

Maker

DODO Capital-efficient liquidity model

SpookySwap Fantom Constant Product BOO Fantom-native DEX with cross-

chain bridges

SundaeSwap Cardano Constant Product SUNDAE First DEX on Cardano,

decentralized governance

ThorSwap ThorChain (Cross-

chain)

Cross-chain

AMM

RUNE Native cross-chain swaps (no

wrapped assets)

9th Class Study Material (CoreDaoVip Global Curriculum)

24

Notes on New Additions:

 IceCreamSwap: Notable for supporting multiple emerging chains like CoreDAO and

zkSync. Offers easy deployment and multi-chain interoperability.

 LFGSwap: Focused on the CoreDAO ecosystem. Offers yield farming and token

swapping features.

 ArcherSwap: Features like NFT farming, launchpad, and staking pools, CoreDAO-

based.

 ShadowSwap: Lightweight DEX on CoreDAO with a focus on user interface speed and

privacy.

DEX LABORATORY

🔁 1. Swap

 Enables instant exchange between two tokens

 Uses Automated Market Maker (AMM) model

 Example: ETH ⇄ USDT on Uniswap, Icecreamswap, PancakeSwap, archerswap,

lfgswap

Fig 6 Swapping on icecreamswap

9th Class Study Material (CoreDaoVip Global Curriculum)

25

Fig 7 Swapping on sushiswap

Fig 8 Swapping on Archerswap

9th Class Study Material (CoreDaoVip Global Curriculum)

26

Fig 9 Swapping on lfgswap

Fig 10 Swapping on pancakeswap

// Simplified swap pseudo-logic

tokenA.transferFrom(user, pool);

tokenB.transferTo(user);

9th Class Study Material (CoreDaoVip Global Curriculum)

27

💧 2. Liquidity Pool

 Users deposit token pairs (e.g., ETH/USDT) into smart contracts

 Pool provides liquidity for swaps

 Users earn LP (Liquidity Provider) tokens and a share of fees

Fig 11 Liquidity pooling in icecreamswap

9th Class Study Material (CoreDaoVip Global Curriculum)

28

Fig 12 Liquidity pooling in icecreamswap

9th Class Study Material (CoreDaoVip Global Curriculum)

29

Fig 13 Liquidity pooling in icecreamswap

9th Class Study Material (CoreDaoVip Global Curriculum)

30

Example:

 Alice deposits $500 worth of ETH and $500 worth of USDT into a pool.

 She earns LP tokens representing her share.

 She receives 0.3% from every swap fee based on her pool share.

3. Locking

 Used to lock LP tokens or native tokens for a fixed period

 Purpose: build trust, stability, and prevent rug pulls

 Locking is usually done using smart contract vaults

Fig 14 Locking on icecreamswap

Use Cases:

 Team token lockups

 Farming lock-ins

 DAO governance locks

4. Gas Fees / Slippage

Gas fees and network fees are related but not always the same — their meanings can vary

slightly depending on the blockchain or context.

9th Class Study Material (CoreDaoVip Global Curriculum)

31

🧾 Gas Fees

 Cost of executing operations (like swaps) on the blockchain

 Paid in native tokens (e.g., ETH for Ethereum)

 Varies based on network congestion and transaction complexity

Fig 15 Network Fee Prompts during swapping

Table 19 Detailed Explanation

Term Definition Used in Purpose

Gas Fee The amount paid to execute a specific operation (like

smart contracts, token swaps) on blockchains like

Ethereum, BNB, Polygon, etc.

Ethereum,

BNB Chain,

etc.

Compensates validators

for computing power

Network

Fee

A broader term that usually refers to any fee paid for

using the blockchain network — includes gas fees but

may also include extra costs or flat transaction fees.

Bitcoin,

exchanges,

wallets

Covers transaction

propagation and

inclusion in blocks

💡 Examples:

 On Ethereum:

o Sending ETH → Network fee = gas fee

o Executing a DEX swap → Network fee = gas * gas price

 On Bitcoin/Core:

o There’s no concept of "gas" → You pay a network fee per byte of the

transaction.

 On MetaMask or wallets:

o They usually show only one “network fee” to simplify, but it is technically the

gas fee.

9th Class Study Material (CoreDaoVip Global Curriculum)

32

Table 20 Key Differences

Feature Gas Fee Network Fee

Specific to smart contract

operations

Yes Not always

Applies to all blockchains No (mostly Ethereum-

like)

Yes (Bitcoin, Ethereum,

etc.)

Can be customized by user Yes (gas price) Sometimes (limited in

wallets)

Fixed or dynamic Dynamic (based on

demand)

Can be fixed or dynamic

✅ Conclusion:

 Gas Fee = A type of Network Fee used in smart contract-enabled blockchains.

 In many contexts, the terms are used interchangeably, but technically they are not

always the same.

📉 Slippage

 Difference between expected price and actual price of a trade

 High slippage can lead to losses during volatile markets or low liquidity

Fig 16 Slippage Prompts during swapping

Example:

 Slippage: 5%

9th Class Study Material (CoreDaoVip Global Curriculum)

33

Table 21 Summary Table

Component Function Benefit

OpenSea NFT marketplace Trade and create NFTs securely

Researcher

Economy

Tokenized research & knowledge

sharing

Decentralized academic economy

Swap Token exchange Fast, peer-to-peer trading

Liquidity Pool Supply of tokens for swaps Earn passive income from fees

Locking Time-lock of tokens or LP Builds trust and ensures long-term

value

Gas Fees Transaction cost Needed for blockchain operations

Slippage Price deviation during trade Impacts trade accuracy and

efficiency

