
8th Class Study Material (CoreDaoVip Global Curriculum)

1

STUDY MATERIAL OF CLASS 8

1. Understanding Algorithms and Decisions

Algorithms are step-by-step procedures or formulas for solving problems. In computer science,

they are the foundation of all programs, whether it's sorting data, searching for items, or making

decisions. Decision-making in programming involves logic that allows software to respond

differently under different conditions—often implemented using conditional statements or

machine learning.

1.1 What is an Algorithm?

An algorithm is a finite, well-defined sequence of steps or instructions designed to perform a

specific task or solve a problem.

Example: A recipe for baking a cake is an algorithm – it includes steps like preheating the oven,

mixing ingredients, and baking for a specific time.

In computer science, algorithms are the backbone of programming. Every task—be it searching,

sorting, or calculating—is carried out by following an algorithm.

1.2 Key Characteristics of a Good Algorithm

1. Input – Clearly defined input(s).

2. Output – Clearly defined output(s).

3. Definiteness – Each step is precisely defined.

4. Finiteness – The algorithm must end after a finite number of steps.

5. Effectiveness – All operations must be basic enough to be carried out.

8th Class Study Material (CoreDaoVip Global Curriculum)

2

1.3 Types of Algorithms

Here are a few common algorithm types:

Algorithm Type Description Example

Search Algorithm Finds an item in a dataset Linear Search,

Binary Search

Sort Algorithm Arranges data in a particular order Bubble Sort, Merge

Sort

Recursive

Algorithm

Calls itself to solve subproblems Factorial, Fibonacci

Greedy Algorithm Makes the optimal choice at each step Dijkstra’s algorithm

Divide and

Conquer

Breaks the problem into smaller sub-problems Merge Sort, Quick

Sort

Dynamic

Programming

Solves complex problems by breaking into

simpler overlapping subproblems

Knapsack problem,

Fibonacci

1.4 What is Decision Making in Programming?

Decision-making allows a program to respond differently based on conditions or user inputs.

This is implemented using conditional statements (if, else, switch) and sometimes loops.

✅ Basic Decision-Making Structure:

if condition:

 # do something

elif another_condition:

 # do something else

else:

 # fallback case

This enables dynamic responses in programs. For example, in an ATM system:

 If the pin is correct → show account balance

 Else → show error message

1.5 Algorithms in Real-Life Decisions

Algorithms don’t just live in code—they affect many real-world decisions:

 Google Search uses PageRank algorithm.

8th Class Study Material (CoreDaoVip Global Curriculum)

3

 Netflix uses recommendation algorithms.

 Banking apps use fraud detection algorithms.

 Self-driving cars use real-time decision-making algorithms for navigation and safety.

1.6 Importance in AI and Machine Learning

In Artificial Intelligence (AI) and Machine Learning (ML), algorithms are used to:

 Train models.

 Optimize outcomes.

 Make predictions or classifications (e.g., spam filter, disease diagnosis).

Each decision in ML is based on a trained algorithm, such as:

 Decision Trees

 K-Nearest Neighbors (KNN)

 Support Vector Machines (SVM)

 Neural Networks

1.7 Why Learn Algorithms and Decisions Early?

Understanding how decisions are made and problems are solved:

 Builds problem-solving skills.

 Prepares students for advanced programming.

 Forms the base of software development, data analysis, robotics, cybersecurity, and AI.

8th Class Study Material (CoreDaoVip Global Curriculum)

4

2. INTRODUCTION TO PYTHON USING BLOCKS

Python is a beginner-friendly, high-level programming language widely used in data science,

web development, and automation. Block-based coding platforms like Google Colaboratory

(Colab) or Blockly make Python even more accessible to beginners.

2.1 Basics

Includes syntax, indentation (critical in Python), comments (#), and basic print() functions.

2.2 Variables, Constants, Keywords

 Variables are containers for storing data values. Example: x = 5

 Constants are fixed values that do not change during execution (though Python doesn’t

have true constants, by convention they are uppercase: PI = 3.14)

 Keywords are reserved words like if, else, for, while, def, which cannot be used as

variable names.

Here is a table of Python keywords as of Python 3.11 (the most widely used versions). These

are reserved words in Python — you cannot use them as variable names, function names, or

identifiers.

Python Keyword Table

Keyword Description

False Boolean value representing false

None Represents the absence of a value

True Boolean value representing true

and Logical AND operator

as Used to create an alias (e.g., import as)

assert Debugging aid that tests a condition

async Used for asynchronous programming

await Pauses async function execution until a task completes

break Exits the current loop

8th Class Study Material (CoreDaoVip Global Curriculum)

5

Keyword Description

class Defines a class

continue Skips the rest of the loop iteration

def Defines a function

del Deletes an object or variable

elif Else if condition

else Else block for conditional statements

except Catches exceptions

finally Executes code regardless of exceptions

for Looping over a sequence

from Specifies the module to import from

global Declares a global variable

if Conditional execution

import Imports a module

in Membership test

is Tests for object identity

lambda Creates an anonymous function

nonlocal Refers to a variable in the nearest enclosing scope

not Logical NOT operator

or Logical OR operator

pass Null operation; does nothing

raise Raises an exception

return Exits a function and returns a value

try Defines a block of code to test for errors

while Loops while a condition is true

with Context manager (e.g., file handling)

8th Class Study Material (CoreDaoVip Global Curriculum)

6

Keyword Description

yield Pauses a generator and returns a value

match Structural pattern matching (added in Python 3.10)

case Used with match statements for pattern matching (3.10+)

Python Code to List All Keywords

You can use the built-in keyword module to get all current keywords:

import keyword

print("List of Python Keywords:")

print(keyword.kwlist)

2.3 Loops

Used for repetitive tasks.

 for loops: Iterate over a sequence.

 while loops: Run as long as a condition is true.

🔹 Conditional Statements

 if, elif, and else control decision-making in code.

Example:

if x > 10:

 print("Greater than 10")

2.4 Array

In Python, arrays are often implemented using lists.

arr = [1, 2, 3, 4]

2.5 Working with Google Colaboratory

Colab is a cloud-based Python notebook environment by Google. It:

 Supports Python and libraries like NumPy, pandas, TensorFlow.

 Requires no setup.

8th Class Study Material (CoreDaoVip Global Curriculum)

7

 Allows collaborative coding like Google Docs.

Fig 1 Google Collaboratory

2.6 Python Lab

Here’s a structured Python lab manual introduction covering basic concepts such as

Introduction to Python, Data Types, Functions, Loops, If-Else, and Arrays, ideal for a school

or college-level curriculum:

🐍 Python Lab Manual – Basic Concepts

📘 1. Introduction to Python

Python is a high-level, interpreted, general-purpose programming language known for its

simplicity and readability. It is widely used in web development, data science, automation,

machine learning, and more.

🔑 Key Features:

 Easy syntax (similar to English)

 Dynamically typed

 Interpreted language

 Open-source and large community support

8th Class Study Material (CoreDaoVip Global Curriculum)

8

 Extensive standard libraries

🛠️ First Python Program:

print("Hello, World!")

🔤 2. Python Data Types

Python supports various built-in data types:

Data Type Example Description

int 10 Integer

float 3.14 Floating-point number

str "Hi" String

bool True Boolean (True/False)

list [1, 2] Ordered, mutable collection

tuple (1, 2) Ordered, immutable collection

dict {"a":1} Key-value pairs

set {1, 2} Unordered, no duplicate values

Example:

a = 10

b = 3.5

c = "Python"

d = True

print(type(a), type(b), type(c), type(d)

🔁 3. Loops

➤ For Loop

for i in range(5):

 print(i)

8th Class Study Material (CoreDaoVip Global Curriculum)

9

➤ While Loop

count = 0

while count < 5:

 print(count)

 count += 1

🔄 4. If-Else Statements

Used for decision making.

num = 7

if num > 0:

 print("Positive number")

elif num == 0:

 print("Zero")

else:

 print("Negative number")

🔧 5. Functions in Python

Functions help modularize and reuse code.

➤ Defining a Function

def greet(name):

 print("Hello, " + name)

greet("Alice")

➤ Function with Return

def add(a, b):

 return a + b

result = add(3, 5)

print(result)

8th Class Study Material (CoreDaoVip Global Curriculum)

10

📚 6. Arrays (Using List)

Python does not have built-in arrays like C/C++; it uses lists which are dynamic arrays.

arr = [10, 20, 30, 40]

Access elements

print(arr[0])

Update element

arr[1] = 25

Append new element

arr.append(50)

Loop through array

for item in arr:

 print(item)

✅ Sample Lab Exercise

Task 1:

 Create a function to calculate the factorial of a number using a loop.

Task 2:

 Write a program to take a list of numbers, and print all even numbers using for loop.

Task 3:

 Write an if-else program to check if a number is odd or even.

8th Class Study Material (CoreDaoVip Global Curriculum)

11

3. What Are Digital Signatures?

Digital signatures are cryptographic methods of verifying the authenticity and integrity of digital

messages or documents. They ensure:

 Authentication (verifying sender),

 Integrity (data not altered),

 Non-repudiation (sender cannot deny sending it).

They rely on asymmetric encryption (public-private key pairs).

4. What Is a Hard Wallet?

A hardware wallet (or cold wallet) is a physical device that securely stores a user's private keys

offline. It:

 Provides high security for cryptocurrencies.

 Is immune to online hacks.

 Examples: Ledger Nano S, Trezor.

5. What Is a Soft Wallet?

A software wallet (or hot wallet) is an application or software that stores private keys on

internet-connected devices like phones or PCs.

 Easier to access and transact.

 Examples: MetaMask, Trust Wallet.

 More vulnerable to cyber attacks than hard wallets.

8th Class Study Material (CoreDaoVip Global Curriculum)

12

Fig 2 Metamask Wallet

Metamask Configuration

Here’s a step-by-step process for configuring MetaMask, whether you're using the browser

extension or mobile app:

🔧 1. Install MetaMask

✅ For Browser (Chrome, Firefox, Brave, Edge):

 Visit https://metamask.io

 Click “Download”

 Choose your browser and install the MetaMask extension.

 Pin the MetaMask icon for easy access (optional but helpful).

https://metamask.io/

8th Class Study Material (CoreDaoVip Global Curriculum)

13

✅ For Mobile:

 Download from Google Play Store or Apple App Store

 Search for “MetaMask” by Consensys (ensure it's the official app)

🔐 2. Create a New Wallet

 Click “Get Started”

 Select “Create a Wallet”

 Agree or decline the data-sharing option

 Create a strong password

 Click “Create”

🔑 3. Secure Your Secret Recovery Phrase

 MetaMask will show a 12-word Secret Recovery Phrase

 Write it down and store it offline (never share this with anyone!)

 Confirm the phrase in the correct order when prompted

🌐 4. Add a Network (Optional for Non-Ethereum Chains)

MetaMask defaults to Ethereum Mainnet. To interact with other networks (like Binance Smart

Chain, Core Chain, Polygon, etc.):

🔽 Steps to Add a Network:

 Click the network dropdown (usually says "Ethereum Mainnet")

 Select “Add network”

 Enter the network details manually (e.g., for Binance Smart Chain):

8th Class Study Material (CoreDaoVip Global Curriculum)

14

Field Value

Network Name Binance Smart Chain

RPC URL https://bsc-dataseed.binance.org/

Chain ID 56

Currency BNB

Block Explorer URL https://bscscan.com

Click Save

📥 5. Import Existing Wallet (Optional)

If you already have a wallet:

 Click “Import Wallet”

 Enter your Secret Recovery Phrase

 Set a new password

💸 6. Fund Your Wallet

You can fund MetaMask with cryptocurrency by:

 Copying your wallet address (starts with 0x...)

 Sending crypto from an exchange (like Binance, Coinbase) or another wallet

⚙️ 7. Advanced Configuration (Optional)

 Custom Tokens: To view a token not shown by default:

o Click “Import Tokens”

o Enter contract address, token symbol, and decimals

 Connected Sites:

https://bsc-dataseed.binance.org/
https://bscscan.com/

8th Class Study Material (CoreDaoVip Global Curriculum)

15

o MetaMask asks for permission before connecting to dApps (DeFi, NFT

platforms)

o You can view/manage connected sites under Settings > Security & Privacy >

Connected Sites

You can now use MetaMask to:

 Send/receive crypto

 Connect to decentralized apps (dApps)

 Trade on DEXs like Uniswap, PancakeSwap

 Mint NFTs

 Use DeFi platforms like Aave, Compound, etc.

6. WEB 1.0 / WEB 2.0 / WEB 3.0 – EVOLUTION OF THE INTERNET

🌐 Web 1.0 – The Static Web (1990–2004)

 Web 1.0 is the first generation of the internet.

 It featured static pages that could only be read.

 There was no user interaction or dynamic content.

 Users were consumers, not contributors.

Example: Personal websites, early news portals, online brochures.

🌐 Web 2.0 – The Social Web (2004–Present)

 Web 2.0 introduced interactivity, social networking, and user-generated content.

 Platforms allow users to comment, upload, and share.

 Dominated by big tech companies.

Example: Facebook, YouTube, Wikipedia, Instagram, Twitter.

🌐 Web 3.0 – The Decentralized Semantic Web (Emerging)

 Web 3.0 aims to make the web smarter, decentralized, and more secure.

 Integrates blockchain, AI, machine learning, and semantic search.

 Focuses on user data ownership, privacy, and decentralized apps (dApps).

8th Class Study Material (CoreDaoVip Global Curriculum)

16

Example: Ethereum, IPFS, Uniswap, Icecreamswap, Archerswap, OpenSea, Brave Browser.

Comparison Table: Web 1.0 vs Web 2.0 vs Web 3.0

Feature Web 1.0 Web 2.0 Web 3.0

Timeline 1990–2004 2004–Present Emerging (2020s onward)

Nature Static and Read-

only

Interactive and Social Intelligent and Decentralized

User Role Consumers only Consumers +

Contributors

Owners + Participants

Content Type Static HTML Pages Dynamic, user-

generated content

Linked data, AI-generated

content

Technologies HTML, HTTP AJAX, JavaScript,

APIs

Blockchain, AI, Semantic

Web, dApps

Data Storage Centralized servers Cloud-based

centralized databases

Decentralized networks

(blockchain/IPFS)

Control Website owners Central companies

(Big Tech)

Users (via smart contracts,

DAOs)

Examples GeoCities, Yahoo

Directory

Facebook, YouTube,

Twitter

Ethereum, Uniswap,

OpenSea, Brave

Privacy No privacy controls Limited privacy, data

exploitation

Enhanced privacy, user-

controlled data

Monetization Banner Ads Ads, user data

monetization

Token economy, crypto

payments

Innovation

Focus

Access to content Sharing and interaction Ownership, trust, AI

understanding

✅ Summary

 Web 1.0 = Read

 Web 2.0 = Read + Write

 Web 3.0 = Read + Write + Own

Version Features

Web 1.0 Read-only web (static pages, limited interaction)

Web 2.0 Interactive and social web (blogs, social media, user-generated content)

Web 3.0
Decentralized, blockchain-powered, AI-integrated web (dApps, smart contracts,

data ownership)

8th Class Study Material (CoreDaoVip Global Curriculum)

17

7. What Is a Smart Contract?

Smart contracts are self-executing programs stored on a blockchain that run when predefined

conditions are met. They automate workflows and remove the need for intermediaries in

transactions.

7.1 Token as Smart Contract

A token is a digital asset implemented using smart contracts. They:

 Represent currencies, loyalty points, or assets.

 Are programmable with logic for transfers, supply, and governance.

7.2 NFT as Smart Contract

NFTs (Non-Fungible Tokens) are unique digital assets (e.g., art, music, tickets) encoded using

smart contracts (typically ERC-721 or ERC-1155). Each token is distinct and provably scarce,

ensuring digital ownership.

8. COIN AND TOKEN

8.1 What Is a Coin?

 Coins are native to a blockchain.

 They are mainly used for payments, mining rewards, or fees.

 Coins = Digital cash

Examples:

 Bitcoin (BTC) → native coin of Bitcoin blockchain

 Core → Native coin of Core Blockchain

 Ethereum (ETH) → native coin of Ethereum blockchain

 BNB → native coin of BNB Chain

8th Class Study Material (CoreDaoVip Global Curriculum)

18

8.2 What Is a Token?

 Tokens are built using smart contracts on an existing blockchain.

 They can represent anything — currency, assets, tickets, governance rights, or even

artwork.

 Tokens use standards like ERC-20 (fungible) or ERC-721 (NFTs).

Examples:

 Coredaovip (corevip), 9nftmania (9nm), PremiumDomain (PD), ARS, CoreID (CID)

 NFTs → digital art or collectibles represented as ERC-721 tokens

8.3 Coin vs Token

Feature Coin Token

Definition A cryptocurrency that runs on its
own blockchain

A digital asset built on top of another blockchain

Blockchain Has its own native blockchain Uses an existing blockchain, like Ethereum

Examples Bitcoin (BTC), Ethereum (ETH),
Litecoin (LTC)

USDT (Tether), UNI, SHIBA, LINK (on Ethereum)

Use Case Primarily used as money or store of
value

Represents assets, access rights, voting, etc.

Transaction
Fees

Paid using the same coin Paid using the native coin of the host blockchain (e.g.,
ETH for ERC-20 tokens)

Created With Requires developing a full blockchain
protocol

Created using smart contracts on existing blockchains

Fungibility Always fungible (each unit is the
same)

Can be fungible or non-fungible (e.g., NFTs)

🔄 In Simple Terms:

🔸 Coin: Native currency of its own blockchain (Core)

🔸 Token: Built on an existing blockchain (like Corevip, Blackdoge)

